Others Also Use: A Robust Recommender System for Scientific Libraries
نویسندگان
چکیده
Scientific digital library systems are a very promising application area for value-added expert advice services. Such systems could significantly reduce the search and evaluation costs of information products for students and scientists. This holds for pure digital libraries as well as for traditional scientific libraries with online public access catalogs (OPAC). In this contribution we first outline different types of recommendation services for scientific libraries and their general integration strategies. Then we focus on a recommender system based on log file analysis that is fully operational within the legacy library system of the Universität Karlsruhe (TH) since June 2002. Its underlying mathematical model, the implementation within the OPAC, as well as the first user evaluation is presented.
منابع مشابه
Recommender Services in Scientific Digital Libraries
In this article we give a survey of the current practice and state-of-theart of recommender services in scientific digital libraries. With the notable exception of amazon.com and CiteSeer which do not qualify as proper scientific libraries our survey revealed that in scientific libraries recommender services are still not in wide use – despite the considerable benefits they offer for students a...
متن کاملA New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملThe Feasibility Study of Launching Book Recommendation System on the Basis of a Lending and Selling System of e-Books and Digital Taktab
Background:The study was conducted to achieve three axes of goals (users, publishers and the system) by way of objectives related to: A) Users - measuring the level of their satisfaction with Taktab system and also use of various methods of data retrieval; B) Publishers - Measuring the level of their satisfaction with Taktab system and also their expectations of the existence of a recommending...
متن کاملEffect of Rating Time for Cold Start Problem in Collaborative Filtering
Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...
متن کاملEnsemble-based Top-k Recommender System Considering Incomplete Data
Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...
متن کامل